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Abstract—In the case of frictional contact problems subjected to periodic loading. due to non-
uniqueness and non-linearity, the size of a load increment must be suitably determined to obtain the
proper, physically meaningful path of response history. A method of an automatic load increment iy
proposcd based on the sensitivity analysis of the solution with respect to the load scale purameter,
Frictional contact conditions are formulated by complementarity and sensitivity analysis of the
solutions with respect to the applied load. using the parametric optimal design theory. As illustrative
examples, a layer pressed against a half-plane by a uniform pressure and subjected to a tangential
force varying periodically in time is tested and compared with the solutions by Comninou and
Bacber (1983, I, J. Solids Structures 19, 533-539). As a practical problem. a valve-cotter system
of a small engine subjected to a periodic loading is solved as a three body contact problem,

{. INTRODUCTION

In the literature, solution methods of a frictional contact problem can be divided into two
aategories. In the first category, the solution is sought iteratively by a trial and crror method
until it satisfics contact and friction conditions (Hanson and Keer, 1989 Rahman ¢ af.,
1984). Sccond, the contact problem is reformulated as mathematical problems such as a
variational incquality or a complementarity problem, The variational incquality for-
mulation is useful in obtaining mathematical propertics of the solution such as existence
and uniqueness (Duvaut and Lions, 1976 Panagiotopoulos, 1985). however it has been
limited to the case in which cither normal pressure or contact are known, or some
mathematical assumptions on smoothness of friction taw are used (Oden and Pires,
19834, b). On the other hand, Klarbring (1986) presented a complementarity problem
formulation where Coulomb friction law is treated as a subdifferential law under the
restriction that contact status is constant during an incremental loading step. All these
methods are lacking a unified complete theoretical basis. They are heuristic or have rather
serious limiting assumptions. Recently, (Kwak and Lee, 1988 Kwak, 1990, 1991) a com-
plementarity principle has been derived directly, which is mathematically complete in
deseribing the frictional problem. For the two-dimensional case, this leads to a lincar
complementarity problem (LCP). In the general three-dimensional case, by introducing a
polyhedral law of friction, the problem can be transformed to a lincar complementarity
problem.

Because of non-linearity of contact problem, an incremental analysis is incvitable.
Since the physical state is unique for a given path of loading, the problem is how to
guarantee the correct path numerically. This will restrict the amount of an incremental
loading step. One common method is that the applied load is incremented by an amount
which causes a change in the contact status (Okamoto and Nakazawa, 1979 Torstenfelt,
1984).

In this paper. a sensitivity analysis with respect to the loading scale purameter is
systemuatically used to obtain the size of an incremental step. It is based on the formulation
by complementarity (Kwak and Lee, 1988 : Kwak, 1991), and the parametric optimal design
theory (Kwak and Haug. 1976) is utilized to derive the sensitivity formula. The sensitivity
of a solution with respect to the perturbations of problem parameters has been studied in
the literature, but with different purposes. In general mathematical programming problems,
it is developed by differentiation of the Kuhn~Tucker conditions {Fiacco and Ghaemi.
1982 Jittorntrum, 1984 ; Tobin, 1986). In the case of a variational inequality formulation,
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it 1s obtained as the solution of an auxiliary variational inequality and is a directional
derivative (Bendsoe er al.. 1985). Using this. Sokolowski (1988) derived a sensitivity formula
with respect to problem parameters for a contact problem with given friction. Haslinger
and Neittaanmaki (1988) also derived the sensitivity formula of contact problem with given
friction by variational inequality and illustrated it by simple examples. For completeness a
general kinematic description with an updated Lagrangian formulation is adopted and
finite element method used for discretization. Large deformation problems in this setting
have been treated earlier (Joo and Kwak, 1986) but no friction is included.

To show the validity and usability of the proposed method. a layer pressed against a
half-plane by a uniform pressure and subjected to a tangential force varying periodically in
time is simulated and compared with the solutions by Comninou and Barber (1983). As a
more practical application. a valve-cotter system of a motorcycle engine subjected to a
periodic loading is solved as an axisymmetric three body contact problem.

2. COMPLEMENTARITY PROBLEM FORMULATION FOR TWO-DIMENSIONAL CONTACT
PROBLEM WITH COULOMB FRICTION

The updated Lagrangian formulation referring to current state ¢ is employed for
loading-path dependent nature of friction phenomena. Large displacement and material
non-linearity are also considered. The formulation of the internal equilibrium is first
summarized and the finite element method is introduced for discretization.

The principle of virtual work at 1+ A7 is expressed as

J ”Alt,-,().”mt',, dV=IP.'\I(SR. (l)
1A

where ' YO R is the external virtual work, and '**'t,, and ' * ¥¢,, arc the Cartesian components
of the Cauchy stress tensor and the Cartesian components of the infinitesimal strain tensor,
respectively.

Since the configuration of the body at time £+ At is not known, the equilibrium equation
of the body is established in the current configuration ¢. Employing the 2nd Piola-Kirchhoff
stress and the Green-Lagrangian strain which are energetically conjugate each other, the
principle of virtual work at time ¢+ At is then rewritten (Bathe, 1982):

J 1+A;Sil‘)‘l+Alll:’ldV= ,*AILSR. (2)

The Green-Lagrangian strain tensor has the following expression :
8:/’ = é(“i,j +"/.1) + éuk.:uk./- (3)

The 2nd Piola-KirchhofT stress and the Green-Lagrangian strain are decomposed as

t+A
:Sn/ = 'T,]- +ISI/‘ (4)
a
* ;8”- = I(,l/ +I'1:/° (5)
where
- ! -
€ = 2, +0,) and ;= §luk.u“k.,‘- 6)

The stress and strain relationship for an incremental loading step is given by

,Si/ = Gkt i€t Q)

where ,C,;,, is the constitutive coefficient at current time .
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When eqns (4), (5) and (7) are substituted, eqn (2) becomes

J,C,,k,,sk,é,c,,dv’+f 'g,é,r,,,dV:"*"dR—J ‘v, 0., db" (8)
1 e

0

Discarding higher order terms in eqn (8), the following equation is obtained :

)

J. ,C,,-k,,ek,é,e,,dV+J. ’t,,é,r],,dV:’”’éR—‘[ ‘1,,0,e,dV". 9)

Employing suitable shape functions. displacement increments u, are expressed as

u(x. x;.x;) = Z¢.k(-‘|~-\”:~-"3)lzk~ (10
k

where ¢, (x,. X2 x;) and i, represent shape functions and nodal displacement increments,
respectively. Following the usual finite element discretization procedure, a matrix equation
corresponding to eqn (9) is obtained :

(K, +Ky )u=""¥R-"""F, (n

where u is the nodal displacement increment vector and,

Co Oy, Cep
K, (i, j) = J Chipy (7\,: ‘{{{”dV. (12)

1y - Bl

A,

Kvi (i, j) = J T p/:.’ ,f",” "av, (13)

I‘. e k - I

hl
"ME3) = J 'Tu(n'di_kldV‘ (14)
1, tAY)

AY N

’*“R(i):j '*A"f(pk,amf ’*A'/'f¢/>k,dr+J tareh,dl, (15)
AL r, re

where f# is body force vector, /7 surfuce traction vector and f§ unknown contact traction
vector at the potential contact surface which is selected sufficiently large to cover the real
contact area. '

Decomposing u into the nodal displucement increments on the potential contact
surface, u., and the internal nodal displacement increments, u,, the matrix equation (11)
can be rewritten in a partitioned form as

K. K. |y F
" i ' - ! . l6
l:K"' K“‘]{uf} {Fl} ( )
where F, and F, are corresponding force vectors. After statically condensing out the internal
degrees of freedom u,, the matrix equation for u, is obtained :

Ku, = F —KF, (17)
where
K=K,.-K.,K;'K,.
K, = K.,K;".



06N S. B. IM and B. M. Kwak

So the relationship between the displacement increment and the force at the potential
contact surface for the Ath body is expressed as

ut = B'FA +TF/. (18)

whereB* =K 'and T = —K 'K,.

The displacement increment u° and force F* in eqn (18) are unknown and these must
satisty contact and friction conditions described below (Kwak and Lee. 1988 : Kwak. 1991).
The formulation is briefly described using a two-dimensional case. [tis noted that the three-
dimensional case is somewhat ditferent from the two-dimensional case, and the reader is
referred to Kwak (1991).

(1) Global cquilibrium

The formulation is described for a two-body contact without loss of generality. Body
2 is assumed restrained against any rigid body displacements, while body 1 is allowed for
rigid body displacement denoted by ¢, as shown in Fig. 1. For body 1. where rigid body
motions are allowed. all the external forces and the contact forces should be in equilibrium.
For configuration at t+ A, from the principle of virtual displacements, the global equi-
tibrium equation for body | is obtained as follows:

J ""I’,II,’,“"dF+J‘ TAS AT =0, (19)
I \:[ /I ‘ t.\lr(l

where the coeflicient matrices o, and #,, represent the rigid body displacements of points
of "M, and "M, in the ith coordinate direction due to a unit displacement in the
Jthrigid body degree of freedom ¢, respectively. And £, and S, denote traction vectors
corresponding to the external and contact forees, respectively.

(2) Impenetration condition
Let the opposing surfaces in the potential contact region at configuration ¢ be described
as shown in Fig, 2.
g ay =0 und ¢ (') = 0. (20)

Then the impenctration condition is expressed as ; for any point !

9 (i +ui(a’y—a'(d)) =0, 20

Fig. 1. Two badics in contact (Kwak, 1991).
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e before deformation

— = after deformation

Fig. 2. General description of impenetration condition (Kwak, 19911

for all ¢ satislying ¢*(a?) = 0 on I}, where
< iy 1 i b5}
w{a)) = u ) +2,,4,. (22
The coetlicient 2, represents the displacement of ¢! due to the rigid body displacement ¢, .

It is noted that g' (¢! + 17 () =i (@) essentially denotes the gap between the points o)
and ] alter deformation during Ar. Let

Do) = min g (@} + 0l (a]) = i} (a)) (23)

such that the value D,(a!} denotes the distance from the particle o) to the surface
¢ () = 0 after deformation. The point «! and the minimizing point «F are called the
contucting puir. Then the impenetration condition cun be simply expressed us

D) 20 forall ¢! such that ¢'(«)) = 0. (24)

By considering only the first order terms of Taylor's expansion, eqn.(23) can be rewritten
for a mating contact pair as follows:

D (a)) = f+nt (u (@) —u'{a]) — Aq). (23)
where
s gt
B=g'a’y., n = _ .
LY al -a;‘

Since cither contact gap N,(q) or contact normal force ** Y/ between two mating
contact pairs after load increment Ar must be equal to zero, the following condition is also
satisfied :

APty =0 forall ! on ). (26)
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(3) Coulomb friction condition
From the Coulomb friction law. the contact tangential force '**'S; must satisfy the
following relation:

_#"“ﬁfp < M.MST < ﬂ’+A,Pv 2N

where g is a friction coefficient. If |"*%'S;| < u'** P, then there is no relative tangential
displacement. And, if |'*¥Sy| = *%P, slip is imminent.

The complementarity problem formulation corresponding to the above conditions
derived in Kwak and Lee (1988) is described for continuity. To describe the complementarity
in the Coulomb friction law, an incremental relative slip value D7 at a contact point is
expressed in terms of displacement increments and rigid body motion, and replaced with a
difference of two non-negative variables as follows:

DT = D; ’—‘D; = !l,»l&! +u,'2{;2 _Atjqj? (28)

D20 and D7 20, (29)

where ¢ and ] are tangential base vector components at the contact point as shown in Fig.
3. and A,, represents the tangential displacement due to a unit displacement in the jth rigid

body degree of freedom.
By introducing slack variables 7% and T, eqn (27) can be rewritten as

/bAlSr+“lh\lP_T+ —- 0‘ (30)
A Wt MPE T =0, 30
T"20 and T 20. (32)

The following complementarity conditions between slack variables are satisfied :
T D}l =0, 33
T -D; =0. (34)

Similarly, eqn (19) can be rewritten in the following matrix form introducing slack
variables V" and V7

A::+Atp+A;l‘t+atsr+HTl+AtF+V‘ o 0' (35)

Fig. 3. Principal axes and force and relative displacement components at potential contact surface
{Kwak, [991).
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A:HNP*{-A,THA‘ST-{-HTH’A‘F—V* =0, (36)

V*>0 and V- 20. 37

Decomposing rigid body motion q with non-negative variables q* and q~, the following
complementarity conditions are also derived :

Vgt =0, (38)
V--q~ =0. (39)

Using eqn (18) and summarizing eqns (25), (28), (30), (31), (35) and (36), a linear
complementarity problem is derived as follows (Kwak, 1991):

z=Mw+r, (40)
wiz=0, 41)
w20 and z20, (42)

where
z={D, D} T- V* V-}T,
W={I+AIP T* Dr- q+ q-}T‘

Bn - Bm H Bm 0 - An An
B,—-B,pu B, I —-A, A,
= 2ul -
M . 1t - 1 0 0 01, (43)
Al—ATu AT 0 0 0
- A;l,‘ + A}r - Af 0 0 0
r= {.8+F,, F, O HIraR —HTNA‘F}T. (44)

3. SENSITIVITY ANALYSIS

The contact problem formulated above by eqns (40)-(42) can be transformed to an
equivalent quadratic problem:

Min f, = wT(M(b)w+r(b)), (45)
z = M(b)w+r(b) >0, (46)
w >0, 4n

where a general parameter vector b is introduced to represent design parameters, loading
scale factor or material propertics.

The sensitivity analysis of interest concerns the effect of perturbations of the parameter
on the optimal solution point. In this paper, the approximation scheme based on parametric
optimal design (Kwak and Haug, 1976), is employed to obtain the sensitivity formula as

éw = —Dsb—C, (48)

where dw and Jb are the variations of solution vector and problem parameter vector,
respectively. Matrices C and D are given in the appendix for a general parametric optimal
design.
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In the above quadratic problem, the solution vector w is n-dimensional. but the number
of constraints is 2. From the complementarity relationship between z and w. i constraints
are always active. If w is considered as basic variables (w > 0) and z as non-basic variables
(z = 0) in complementarity pairs, only eqn (46) are active constraints. If constraints (46)
are linearly independent, M, and ©@ 'M, in the appendix become a unit matrix and M(b) .
respectively. This means that variations of solution variables are obtained by considering
active constraints only. and matrices C and D are reduced to the simple form:

D =M 'G". (49)
C = —M(b) 'Ag. (30
where Ag is the desired reduction in active constraints usually tuken as Ag = —g which

corresponds to the amount of active constraint violation, and G' is given in the appendix.
If problem parameters are fixed {(ob = 0). the solution is updated iteratively as

w«&Hv — w“"+C‘“, (5”

If the maximum violation constraint is considered for an iteration, this scheme is the
same as the Lemke algorithm (Bazarua and Shetty. 1979) for lincar complementarity
problems. At a solution point, C cqual to zero since constraint villutions Ag are vero. Then
the variation of a solution point with respect to a problem parameter perturbation db is
given as

Oow = — D(HL (ﬁ?_)

FFrom the solution scheme, the sensitivity matrix D is obtained iff G is used as another
loading vector since w is a basic solution vector. At a solution point, there is a small range
of parameter perturbations such that the set of active constraints is not changed for small
perturbations of problem parameters. So the variation of the non-basic solution z is zcro.

For a degenerate case, that is, when both 2, = 0 and w; = 0 lor an i, the number of
active constraints can be greater than s, In this case, different sensitivity matrices D are
obtained by choosing different sets of # active constraints from the active constraint set,
Each of these ditferent sensitivity matrices D denotes a directional derivative at the solution
point for the degenerate case. Sensitivity results are used for the determination of u suitable
load increment as described below,

4. NUMERICAL IMPLEMENTATION AND EXAMPLES

Since the solution of a contact problem is loading-path dependent, a load increment
is calculated by considering the contact status at loading step 1. According to the sensitivity
results, the variations of the busic solution w and non-basic solution z at loading step 1 for
a loading perturbation 3f are obtained as

dw = —Ddf. {33)
8z =0, (54)
where the sensitivity matrix D is
D=-M'G". (53)
G'=[0F, OF, 0 —H"9"YF H'6"VF)'. (36)

Here M is the same matrix as in eqn (43) for the basic solution w and non-basic solution z
at loading step 4. and G is the variation of the force vector rin cyn (44).
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After load increment A/, basic solutions ' **'w at loading step 7+ At are expected to be
1Oy = ‘w—DASf. (57

For a change in the contact status. at least one component of the basic solution "~ ¥'w
will be reduced to zero at loading step 1+ At. So the load increment Af is calculated with
the following provisions:

(1) load increment for a contact point to be a4 non-contact point
If the contact normal force ' P, for a contact point i is a basic solution at loading step
1.7 P at loading step ¢+ At is expected to be

cp,
NP =Pt LA, (58)

of

where P = (¢P,/¢f) can be obtained from (53) by considering a unit variation of §/. Then
the load increment Af, that can make '+3p be zero is

Ay = — 5. (59)

(i1) load increment for a non-contact point to be a contact point
If the contact gap ‘D, for a contact point i is a basic solution at loading step
.7V D, atloading step 1+ Ar is expected to be

oD,

R ]
D,='D,+ _.
T

o, (60)

As in the previous case, to reduce ’“"D,,, to zero, the load increment Af), is

D,

A./}J, = = D;,,‘ 61)

where D), = (2D, /¢f) can be obtained trom (53) by considering a unit variation of df.

(i) load increment for a stick contact point to be a slip contact point
If stack vaniables T)" and T, for a contact point { are basic solutions at loading step
1, the tangential contact force "' S, at loading step ¢+ Ar is expected to be

s
Sr'+75_7A/

erIST
'

e B (‘,‘Ti* () T," .
(,7: —'TI ),’l2+ ('"é/'.‘ - -éj‘>Aj/2’ (62)

where S = (S ,/¢f) can be obtained from (53) by considering a unit variation of §f. If
slip is to occur at £+ Ar, the tangential contact force *** S, must be

IO-AISrl _ i('ulb-t\li)')' (63)
Inserting eqns (58) and (62) into (63). the load increment for slip to occur is determined as

wP~'Sr,

Af,e ="

,A 64
St —nP; 9
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Initialize t = 0, uz=0
i

Read extemal force Fe
Determine initial step size Af =0.01 Fe

1

. {1)
t=t+At i=l,u=u,

i

Compute
Stiffness matrices K, K.
LCP matrices M, r

Solve contact problem formulated by LCP
Obtain basic solution w, non-basic solution z

Calculate next incremental loading step size Af
Update basic variables"*w ='w - D Af

Yes na No

Fig. 4. Block diagram of the present computer algorithm for contact steess analysis with Coulomb
[riction.

or

A . (/‘IPI+ISI',) 65
A T ©3)

The smallest load increment is selected to follow the load history:

Af = min={Af, Afp Af, L Af; ] (66)
Now, an initial basic variable ***w can be obtained from eqn (57). And the solution
point at 7+ At is obtained iteratively from eqn (51). The proposed solution scheme for a
contact problem with friction is thus summarized as shown in Fig. 4. It is noted that the

step-size problem with non-constant cocflicient matrices for elasto-plastic large deformation
is yct to be studied.

Example 1. Frictional slip between a laver and half-plane due to a periodic tangential force
In this example, the contact phenomena between an elastic layer and a half-plane due
to concentrated surface loads have been examined and compared with the solutions by
Comninou and Barber (1983). The layer of thickness « is pressed against the half-plane by
a uniform pressure P, as shown in Fig. 5, and subjected to a concentrated tangential load
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Q

777 e

Elastic Half-plane \

Fig. 5. Layer-substrate geometry.

| Elastic layer "‘

10a

‘ [Elastic Half-plané

20a 20a

Fig. 6. FEM maodel of a layer and a half-plane.

Q which varies periodically in time as shown in Fig. 7. For the layer and the half-plane, 72
quadrilateral plane strain finite clements and 128 elements are used respectively as shown
in Fig. 6, and 39 contact nodes are used in the potential contact surface between the layer
and the half-plane. Young's modulus, Poisson’s ratio and Coulomb’s frictional cocflicient
are 200,000 (force/length®), 0.3 and 0.5, respectively. In the description of results, dimen-
sionless loading parameter 4 = (Q/Py) (and corresponding i, = (Q,/Pya)) is used as in

Q

Q- = == — = = — = = — - — —

Y

Fig. 7. Variation of load Q as a function of time.
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Comninou and Barber (1983). In this numerical computation, 4, is taken as 2.353 and
friction coefficient u as 0.5 for comparison with the existing solution.

Initially a uniform pressure P, is applied and 4 = 0.01 4, is taken as the first load
increment. The loading when the first slip occurs is calculated from the sensitivity results.
The first slip occurs when ~ = 2.054, and slip region increases to —1.5<va< —0.3
when /4 = /,. During unloading. stick prevails everywhere until A = —2.057. and then
back slip occurs in the range 0.5 < x/a < 1.5 when i = —4,. According to Comninou
and Barber (1983). the first slip occurs when 4 =2.03, forward slip occurs in
the range —).4445 < v/a< —0.4 during the first loading and back slip occurs in
0.4039 < x/a < 1.4391 during unloading. In the present numerical calculation. the forward
slip area on loading and the back slip area on unloading are the same possibly because of
the size of the discretization. But it is found that back slip occurs at a higher load than the
first forward slip by the effect of the residual frictional force. During reloading to 2,. no
slip occurs anywhere. In the calculation process, four loading steps on loading. four on
unloading and two on reloading have been executed as determined by the sensitivity results.
The normal contact pressure and shear traction distributions are shown in Figs 8§ and 9
and compared with the solutions redrawn manually from Comninou and Barber (1983).
By an increase of the maximum tangential force Q. the slip region extends and slip occurs
on rcloading when 4, = 3.051 [4, = 3.1 by Comninou and Barber (1983)]. The overall
behavior of the slip-nonslip history. the corresponding loads levels and traction dis-
tributions are all in good agreement with the analytical solution from Comninou and Barber
(1983).

Example 2. Three body frictional contact analvsis of a valve-cotier system of a motorcyvele
cnygine

The intake valve shown in Fig. 10 taken from a motorcycle engine is driven by cam
and locker arm. At the initial position with the valve closed, the two springs arc in a
compressed state pressing the cotter and the retainer. By the motion of the valve, the spring

1.5
fa A
- A A A s
ap 1.0
a
v
[
g
a
b+
a A
a
o
= 05
]
g
5
F4
—Comninou
A FEM
0.0 1 1 1 i 1 1 1

-4.0 -30 -20 -1.0 0.0 1.0 2.0 3.0 4.0
(a) x/a

Fig. 8. Normal contact pressure for 4, = 2.353. (a) Loading corresponding to point A in Fig. 7.
(b) Loading corresponding to point B in Fig. 7. (¢) Loading corresponding to point C in Fig. 7.
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Fig. 8 continued
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forces oscillate. The extent of contact pressure concentration and the prediction of wear
duc to the frictional slip during this repeated loading will be the most important information

for the design of the system.

The valve-cotter system is analysed as a three body frictional contact problem. The
valve, the cotter and the retainer are modeled by 105, 133 and 86 quadrilateral axisymmetric
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finite elements respectively as shown in Fig. 11. Young’s modulus, Poisson’s ratio and the
friction coefficient are taken as 206 GPa, 0.3 and 0.3, respectively. In this model. the vertical
displacement of point a in Fig. 11 is fixed. The cotter and the retainer are allowed to have
rigid body motions in the - direction. The spring forces varying periodically in time as

0.6
—— Comninou
A FEM
e 04 |
-
£
3
¢
-3 =
i: 0.2 A
A
A
4 \
0.0 1
-4.0 -3.0 -20 -1.0 0.0 1.0 290 3.0 4.0
(a) x/a
0.0
& h
A
A
A
& 2}
“
: ¢
A
3
a
~
g
- 04
A
~——Comninou
A FEM
06 1 1 1 1 ) 1 1

4.0 30 20 -1.0 0.0 1.0 2.0 30 4.0
(b)

x/a

Fig. 9. Tangential traction for i, = 2.353. (1) Loading corresponding to point A4 in Fig. 7.
(b) Loading corresponding to point 8in Fig. 7. (c) Loading corresponding to point C in Fig. 7.
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A FEM
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g 'y
X
¢
[ ]
H
= 02
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0.0 1 1 1

40 30 20 -10 00 1.0 20 30 4.0
(c)
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Fig. 9 continued
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Fig. 10. Valve-cotter system of a motorcycle engine (Courtesy of Hyosung Machineries, Inc.).

SAS 29:24-9
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Valv

;i

cotter f Retainer

/ {a)

Cotter

Valve

(c)

Fig. 1L FEM model of valve, cotter and retainer and coordinates ol contact region. (a) FEM
maodel. (b) Contact region 1. (¢) Contact region 2. (d) Contact region 3.

shown in Fig. 12 arcacting at points d and ¢ in Fig. [1. They are estimated from a separated
analysis of the valve system. Three potential contact regions are identified : Regions 1 and
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Fig. 12. Spring forces as a function of time.
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Fig. 13. Pressure distributions in potential contact region 1 for various load levels in Fig. 12.
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Fig. 14. Tangential traction distributions in potential contact region [ for various load levels in
Fig. 12.
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Fig. 15. Pressure distributions in potential contact region 2 for various load levels in Fig. 12,
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Fig. 16. Tangential traction distributions in potential contact region 2 for various load levels in
Fig. 12,
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2 between the valve and the cotter with 10 and 14 nodes, respectively. and region 3 between
the cotter and the retainer with 23 nodes, as shown in Fig. 11(b). (¢) and (d).

During the first loading between time 4 and B in Fig. 12, all of the nodes in contact
region | are in a state of slip and the contact pressure is highest in this region as shown in
Fig. 13. In the unloading stage between B and C, back slip occurs at all nodes in contact
region 2. Bul. in contact region 3. back slip occurs in the middle zone as shown in Fig. 18
and the other nodes near both ends are in a state of stick. No slip occurs in contact region
I. The contact pressure and tangential traction show very much different distributions for
the same load levels 4 and C. The distributions at time B on loading and at D on reloading,
however, are nearly equal indicating that the contact status is repeating after time B.

As noted by Torstenfelt (1984). stress at a point is not necessarily at its extreme when
the external load becomes maximum. For all of the contact nodes in region 2 and the nodes
at end zone in region 3. the normal contact pressure and the tangential traction are larger
at time Cthan at Band D although external load at Cis smallest. This is due to the frictional
effect as shown in Figs 15-18. The contact pressure concentration at region | and slip and
back slip at region 2 and 3 can be damaging to the cotter. Because of the rapid change of
the contact status. 6 loading steps on loading, 15 on unloading and 24 on reloading have
been found performed in the incremental analysis.

5. CONCLUSION

A sensitivity analysis for the frictional contact formulated by complementarity is
presented and used for a logical determination of load increments, The algorithm developed
is very cflicient and systematic. The method has been applied to the case of a periodic
tangential loading of an clastic layer and a half-plane. The results agree well with the
analytical solutions by Comninou and Barber. As a practical application, a valve-cotier
system of a motoreycle engine has been solved as a three body frictional contact problem.
The results have shown the capability of following a complex response history and revealed
all the detail information necessary lor a design analysis.
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APPENDIX: FIRST-ORDER SENSITIVITY FORMULA FOR AN OPTIMAL PROBLEM

An explicit expression for the first-order sensitivity formula by Kwak and Haug (1976) is shown using a
gradient-projection method with constraint error compensation. The problem is of the following type:

min fy(w. b), (Al)
subject to p(w, h) <0, (A2)

where b is the vector of problem parameters and w solution vector.
An approximation problem is detined by Taylor series expansions of the objective function f, up to the
sccond order and active constraints up to the tirst order as follows :

e Moy . AW U ol N AN
min 5o = (¢“h>nb+(:’w ow 2Ob' b Sh + ob’ b ow oW + zx)w ow' ow, (AJ)
LR R .
o= Cows b = Ag, (A4)
Ow h

where A is the desired reduction in the active constriunts,
The Kuhn Tucker necessiary conditions for the problem (A3) (A4) are then solved to obtain

Sw = —Dob~C, (AS)
where
D=0 "[A-M )8 +MG
C =1 "[(1-M,)A - M AZ].
M, =QQ'e 'O . oM, =MQ'0
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